Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Cleland, W. W. (1964). Biochemistry, 3, 480.
Cromer, D. T. (1965). Acta Cryst. 18, 17.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104.
Cruickshank, D. W. J. (1965). Computing Methods in Crystallography, p. 114. Edited by J. S. Rollett. Oxford: Pergamond Press.
Hamilton, W. C. (1965). Acta Cryst. 18, 502.
Hampson, G. C. \& Stosick, A. J. (1938). J. Amer. Chem. Soc. 60, 1814.
Hornstra, D. S. Phillips Single Crystal Diffractometer Manual, p. 9.

Kimura, M. \& Aoki, K. (1951). J. Chem. Soc. Japan, 72, 169.

Lee, C. S. \& Donohue, J. (1944). J. Amer. Chem. Soc. 66, 818.

Mason, R. \& Robertson, G. B. (1966). Advances in Structure Research by Diffraction Methods, Vol. 2, p. 57.
Sutton, L. E. (1958). Tables of Interatomic Distances and Conformation in Molecules and Ions. London: The Chemical Society.
Trotter, J. A. Univ. of British Columbia Crystallographic Program Library.
Wilson, A. J. C. (1942). Nature, Lond. 150, 152.
Zahler, W. L. \& Cleland, W. W. (1968). J. Biol. Chem. 243, 716.

Acta Cryst. (1972). B28, 1331

Refinement of the Crystal Structures of $\left(\mathrm{C}_{6} \mathbf{H}_{5}\right)_{4} \mathrm{AsI}_{3}$ and CsI_{3} at $\mathbf{2 0}{ }^{\circ} \mathrm{C}$ and at $\mathbf{- 1 6 0}{ }^{\circ} \mathrm{C}$

By J. Runsink, Susan Swen-Walstra and Tiny Migchelsen
Laboratorium voor Structuurchemie, Rijksuniversiteit Groningen, Zernikelaan, Paddepoel, Groningen, The Netherlands

(Received 31 July 1971)

Abstract

Three-dimensional intensity data have been collected both at room temperature and at $-160^{\circ} \mathrm{C}$ for the triiodides CsI_{3} and $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{AsI}_{3}$. The present work confirms the conclusion of Tasman \& Boswijk [Acta Cryst. (1955), 8, 59] regarding the asymmetry and non-linearity of the I_{3}^{-}ion in CsI_{3}. The bond lengths in the symmetric I_{3}^{-}ions in $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{AsI}_{3}$ [2.919 (1) \AA] are somewhat longer than the values reported by Mooney-Slater [Acta Cryst. (1959), 12, 187], but are still shorter than the average I-I bond lengths observed for $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{3}(\mathrm{I})$ and $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{3}(\mathrm{II}), 2.935$ and $2.936 \AA$ respectively. The I-I bond lengths observed in different triiodides are compared, and the differences are discussed.

Introduction

The configurations of I_{3}^{-}ions in different crystals have aroused considerable interest (Brown \& Nunn, 1966; Migchelsen \& Vos, 1967; Wiebenga \& Kracht, 1969). The bond lengths and angles known with reasonable accuracy at the beginning of the present study are given in Table 1 (a). The Table shows that for $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{7}$ the I-I bond length is significantly shorter than the average I-I bond lengths observed for the compounds $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{3}(\mathrm{I})$ and $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{3}(\mathrm{II})$. This does not hold for $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{AsI}_{3}$ for which the bonds had been reported to be relatively short (Mooney-Slater, 1959; Rundle, 1961). The presence of the short distances in $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{7}$ at $-195^{\circ} \mathrm{C}$ cannot be attributed to the electrostatic crystal field as for all symmetric I_{3}^{-}ions the calculated bond orders are independent of this field (Wiebenga \& Kracht, 1969). We have therefore tentatively assumed the presence of the short I-I bonds in $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{7}$ at $-195^{\circ} \mathrm{C}$ to be due to either a shrinkage of the weak I-I bonds at low temperature or to complex formation (the I_{3}^{-}ions have strong interactions with neighbouring I_{2} molecules). To get more insight in this problem we have refined the crystal structures of $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{AsI}_{3}$,
having symmetric I_{3}^{-}ions, and of CsI_{3}, having asymtric I_{3}^{-}ions, both at room and at low temperature.

Discussion of the I-I bond lengths

Influence of the temperature

The I-I bond lengths and angles observed in $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{AsI}_{3}$ and in CsI_{3} at room temperature and at low temperature, are given in Table $1(b)$. We see that in both compounds the bond lengths at low temperature are equal to those at room temperature, so that it can be concluded that no shrinkage of the bonds occurs at low temperature.

Symmetric I_{3}^{-}ions

Comparison of the bond lengths in the different symmetric I_{3}^{-}ions in Table 1 shows that there are significant differences between the lengths of the bonds. Values increasing from 2.904 to $2.943 \AA$ are observed when going from $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{7}$ via $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{AsI}_{3}$ and $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{3}(\mathrm{I})$ (ion A) to $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{3}(\mathrm{I})$ (ion B). Consideration of the crystal structures shows that both for the I_{3}^{-}ion B in $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{3}(\mathrm{I})$, having the longest I-I distance, and for the I_{3}^{-}ion in $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{7}$, having the
shortest I-I distance, there is a relatively strong interaction with neighbouring iodine atoms. The type of interaction is different, however, for the two ions. Ion B is involved in intermolecular distances shorter than the van der Waals distance in such a way that a linear array I...I-I-I \cdots I is formed [Fig. 1(a)], whereas for I_{3}^{-}in $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{7}$ the short intermolecular $\mathrm{I} \cdots \mathrm{I}$ distances are roughly perpendicular to the $(\mathbf{I}-\mathrm{I}-\mathrm{I})^{-}$ion [Fig. $1(c)$]. For ion A in $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{3}(\mathrm{I})$ the intermolecular interaction [Fig. $\mathrm{l}(b)$] is much smaller than for ion B, while for the I_{3}^{-}ion in $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{AsI}_{3}$ no short intermolecular distances are observed ('free' I_{3}^{-}ion). This seems to suggest that the I-I bond in a free I_{3}^{-}ion lies close to $2.920 \AA$. The presence of a linear array as shown in Fig. $1(a)$ appears to increase the I-I bond length, whereas the configuration of Fig. $1(c)$ causes a shortening of the bonds.
The lengthening of the bonds in ion B has been estimated by doing a PPP calculation (Pariser \& Parr, 1953; Pople, 1953) for both the ions A and B in $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{3}(\mathrm{I})$. The p orbitals used for each of the calculations are given in Fig. 2. The intra- and intermolecular distances were taken from the crystal structure, the electrostatic crystal field was not considered as this does not change the calculated lengths for the bonds in symmetric I_{3}^{-}ions (see introduction). The calculated bond orders P are 0.690 for ion B and 0.704 for ion A ($P=0.707$ for an isolated I_{3}^{-}ion), so that the bonds for B are expected to be longer than for A in agreement with experiment. From the slope $\mathrm{d} R / \mathrm{d} P=$ -1.2 at $P=0.7$ of the $R(P)$ curve given by Wiebenga \& Kracht (1969; Fig. 2), ΔR is calculated at $0.017 \AA$, which is of the right order of magnitude.
The shortening of the bonds in the I_{3}^{-}ion in $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{7}$ could not be made plausible from simple

PPP calculations, as in this case the complete threedimensional network consisting of I_{3}^{-}ions and I_{2} molecules has to be considered. For this compound further theoretical work is required.

Asymmetric $\mathrm{I}_{3}-$ ions

Theoretical calculations on free I_{3}^{-}ions including the (electrostatic) crystal field, predict unequal bonds for I_{3}^{-}ions having asymmetric surroundings in the crystal. As long as the asymmetry is small, the average value of the bonds is expected to be negligibly larger than the lengths observed for free symmetric I_{3}^{-}ions. For highly asymmetric ions a small increase of the average bond length is expected [see $R(P)$ curve in Wiebenga \& Kracht, 1969]. Table 1 shows that for the asymmetric ions in $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{3}(\mathrm{II})$ and in $\mathrm{CsI}_{3} \frac{1}{2}\left[R_{12}+\right.$ $\left.R_{23}\right]$ is, within experimental error, equal to the length of the I-I bond of ion B in $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{3}(\mathrm{I})$ and larger than the value observed for the free I_{3}^{-}ion in $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{AsI}_{3}$.

Fig. 1. Shortest intermolecular distances in the neighbourhood of (a) ion B in $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{3}(\mathrm{I}),(b)$ ion A in $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{3}(\mathrm{I})$ and (c) the $\mathrm{I}_{3}{ }^{-}$ion in $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{7}$.

Table 1. Distances R_{12} and $R_{23}(\AA)$ and angles (${ }^{\circ}$) for I_{3}^{-}ions in different crystals
The standard deviations in parentheses are in units of the last decimal place. Sym. = symmetry special position $\mathrm{I}_{3}-\mathrm{ion} ; \mathrm{I} \cdots \mathrm{I}=$ shortest intermolecular $I \cdots I$ distance, given only if smaller than van der Waals value.
(a) Values from older work

Compound	Sym.	Angle	R_{12}	R_{23}	$\frac{1}{2}\left[R_{12}+R_{23}\right]$	I \cdots. ${ }^{\text {I }}$	Literature
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{7}$	2/m	180	2.910 (9)	2.910 (9)	2.910 (9)	$3 \cdot 47$	Havinga \& Wiebenga, 1958.
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{7}\left(-195{ }^{\circ} \mathrm{C}\right)$	2/m	180	$2 \cdot 904$ (3)	$2 \cdot 904$ (3)	$2 \cdot 904$ (3)	$3 \cdot 44$	Havinga \& Wiebenga, 1958.
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{AsI}_{3}$	2	$176 \cdot 4$	$2 \cdot 90$ (2)	2.90 (2)	2.90 (2)		Mooney-Slater, 1959.
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{FeI}_{3}$	$\overline{3} m$	180	$2 \cdot 93$ (2)	2.93 (2)	$2 \cdot 93$ (2)		Bernstein \& Herbstein, 1968.
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{3}(\mathrm{I}) \quad A^{*}$	$2 / m$	180	2.928 (25)	2.928 (25)	$2 \cdot 928$ (25)		Migchelsen \& Vos, 1967.
B	$2 / m$	180	$2 \cdot 943$ (25)	2.943 (25)	$2 \cdot 943$ (25)	4.14	Migchelsen \& Vos, 1967.
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{3}(\mathrm{II}) A$	m	$177 \cdot 1$ (1)	2.912 (35)	2.961 (35)	2.936 (2)	$4 \cdot 24$	Migchelsen \& Vos, 1967.
Crior ${ }^{\text {b }}$	m	179.5 (1)	2.892 (35)	2.981 (35)	$2 \cdot 936$ (2)	$4 \cdot 10$	Migchelsen \& Vos, 1967.
CsI_{3}	m	$176 \cdot 3$ (5)	$2 \cdot 83$ (15)	$3 \cdot 04$ (15)	$2 \cdot 94$ (15)	4.03	Tasman \& Boswijk, 1955.

(b) Recently determined values

Compound	Sym.	Angle	R_{12}	R_{23}	$\frac{1}{2}\left[R_{12}+R_{23}\right]$	$\mathrm{I} \cdots \mathrm{I}$	Literature
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{AsI}_{3}$	2	$175 \cdot 61$ (5)	2.920 (2)	$2 \cdot 920$ (2)	$2 \cdot 920$ (2)		Present study.
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{AsI}_{3}\left(-160{ }^{\circ} \mathrm{C}\right)$	2	174.69 (2)	2.919 (1)	2.919 (1)	2.919 (1)		Present study.
CSI_{3}	m	177.9 (1)	2.840 (4)	3.042 (4)	$2 \cdot 941$ (2)	4.01	Present study.
$\mathrm{CsI}_{3}\left(-160^{\circ} \mathrm{C}\right)$	m	178.00 (6)	$2 \cdot 842$ (2)	3.038 (2)	2.940 (1)	3.97	Present study.
$\mathrm{NH}_{4} \mathrm{I}_{3}$	m	$180 \cdot 0$ (1)	2.791 (4)	$3 \cdot 113$ (4)	$2 \cdot 952$ (2)	$3 \cdot 88$	Cheesman \& Finney, 1970.

Consideration of the crystal structures shows that this lengthening can be ascribed to intermolecular interaction.

For the asymmetric ions in $\mathrm{NH}_{4} \mathrm{I}_{3}$ the value for $\frac{1}{2}\left[R_{12}+R_{23}\right]$ is slightly larger than the values observed for the remaining asymmetric I_{3}^{-}ions. A small elongation relative to these ions can be expected as: (1) the intermolecular distances in $\mathrm{NH}_{4} \mathrm{I}_{3}$ are somewhat shorter than, for instance, in the isomorphous compound CsI_{3}, and (2) the asymmetry of the ions is relatively high. It must further be mentioned that accurate work on $\mathrm{NH}_{4} \mathrm{I}_{3}$ is hampered by its rapid decomposition, so that it cannot be excluded that the standard deviations reported by Cheesman \& Finney (1970) are lower estimates of the errors in the structure.

Structure refinements

Crystals of CsI_{3} were obtained by adding iodine to an equivalent amount of CsI dissolved in ethanol and slow evaporation of the solute. Crystals of $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{AsI}_{3}$ were grown by diffusion from solutions of $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}$ AsI and I_{2} in ethanol, the solutions being put in the vertical parts of a U-shaped tube having pure ethanol between glass filters in its horizontal part. Large crystals measuring approximately $0.2 \times 0.3 \times 0.4 \mathrm{~mm}$ were obtained after some days. Details of the experimental work are given in Table 2. For the low temperature work the crystals were cooled down to $-160^{\circ} \mathrm{C}$ by a stream of cold nitrogen gas (for apparatus used, see van Bolhuis, 1971).

Table 2. Details of the experimental work on $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{AsI}_{3}$ and CsI_{3}
The compounds are indicated as $\mathrm{C}(1)$ and $\mathrm{C}(2)$ in the Table.

Crystallographic data (Table 3)

Method used for intensity measurements
Crystal used
θ region and number of reflexions with $I($ net $)>0$

Calculation of $|F|$
Starting coordinates

Refinement

Weighting scheme*

Extinction
Scattering factors
$R_{w}=\frac{\sum w|\Delta F|}{\sum w\left|F_{o}\right|}$
Final parameters \dagger
Bond lengths and angles
$\left|F_{o}\right|$ and $\left|F_{c}\right|$

Zero layer line Weissenberg photographs calibrated with NaCl reflexions; $\lambda\left(\mathrm{Cu} K \alpha_{1}\right)=1 \cdot 54050, \lambda\left(\mathrm{Cu} \mathrm{K} \mathrm{\alpha}_{2}\right)=1 \cdot 54434, a(\mathrm{NaCl})=5 \cdot 64006 \AA$.
3-circle Nonius diffractometer, $\theta-2 \theta$ scan, Zr -filtered Mo radiation.
Approximately $0.2 \times 0.3 \times 0.4 \mathrm{~mm}[C(1)]$ and $0.11 \times 0.14 \times 0.14 \mathrm{~mm}[C(2)]$.
$\theta \leq 28^{\circ}, 2827\left[\mathrm{C}(1), 20^{\circ} \mathrm{C}\right] ; \theta \leq 38^{\circ}, 6257\left[\mathrm{C}(1),-160^{\circ} \mathrm{C}\right]$
$\theta \leq 25^{\circ}, 747\left[\mathrm{C}(2), 20^{\circ} \mathrm{C}\right] ; \theta \leq 35^{\circ}, 1630\left[\mathrm{C}(2),-160^{\circ} \mathrm{C}\right]$
Corrections for Lp and for absorption according to Busing \& Levy (1957).
C(1): Mooney-Slater, 1959.
C(2): Tasman \& Boswijk, 1955.
Anisotropic block-diagonal least-squares (Cruickshank, 1961), TR4 computer, hydrogen atoms fixed with reasonable parameters.
$w=\left[\left\{\sigma_{c}\left(F_{o}\right)\right\}^{2}+P F_{o}{ }^{2}\right]^{-1}$
$P=0.25 \times 10^{-4}\left[\mathrm{C}(1), 20^{\circ} \mathrm{C}\right] ; P=0.6 \times 10^{-4}\left[\mathrm{C}(1),-160^{\circ} \mathrm{C}\right]$
$w=1 \quad\left[\mathrm{C}(2), 20^{\circ} \mathrm{C}\right] ; P=1 \times 10^{-4}\left[\mathrm{C}(2),-160^{\circ} \mathrm{C}\right]$
Zachariasen (1968).
f_{o} (Doyle \& Turner, 1968; Stewart, Davidson \& Simpson, 1965).
Δf^{\prime} and $\Delta f^{\prime \prime}$ (International Tables for X-ray Crystallography, 1962)
$0.061\left[\mathrm{C}(1), 20^{\circ} \mathrm{C}\right] ; 0.044\left[\mathrm{C}(1),-160^{\circ} \mathrm{C}\right]$
$0.066\left[\mathrm{C}(2), 20^{\circ} \mathrm{C}\right] ; 0.067$ [C(2), $\left.-160^{\circ} \mathrm{C}\right]$
Tables 4, $5\left[\mathrm{C}(1),-160^{\circ} \mathrm{C}\right]$, Table $6\left[\mathrm{C}(2),-160^{\circ} \mathrm{C}\right]$
Table 7
Available on request.

* $\sigma_{c}\left(F_{o}\right)$ is the standard deviation in F_{o} based on counting statistics.
\dagger Final parameters are given for the low temperature studies only.

Table 3. Crystallographic data

Compound	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{AsI}_{3}$		CsI_{3}	
Temperature	$-160^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$-160^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$
a	$15 \cdot 365$ (5) \AA A	15.421 (4) \AA	6.751 (5) \AA	6.853 (3) \AA
b	$7 \cdot 622$ (3)	7.773 (3)	9.963 (5)	10.028 (8)
c	$10 \cdot 298$ (4)	$10 \cdot 422$ (3)	$10 \cdot 997$ (7)	11.082 (5)
β	93.58 (2) ${ }^{\circ}$	93.03 (1) ${ }^{\circ}$		
Space group	$P 2 / n$		Pmen	
\boldsymbol{Z}				
μ (Mo)	$53.6 \mathrm{~cm}^{-1}$	$52.0 \mathrm{~cm}^{-1}$	$176.0 \mathrm{~cm}^{-1}$	$171.0 \mathrm{~cm}^{-1}$

Table 4. $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{AsI}_{3}$ at $-160^{\circ} \mathrm{C}$. Final coordinates with standard deviations as calculated by the least-squares program in units of the last decimal place in parentheses.

For numbering of atoms_see_Fig. 3 .

	x	y	z
	$=(1)^{*}$	$0.25000(0)$	$0.14500(3)$
I	$0.75000(0)$		
$\mathrm{I}(2)$	$0.06093(1)$	$0.16273(3)$	$0.70221(2)$
As^{*}	$0.25000(0)$	$-0.01473(5)$	$0.2500(0)$
$\mathrm{C}(1)$	$0.2319(2)$	$-0.1663(3)$	$0.3925(3)$
$\mathrm{C}(2)$	$0.1594(2)$	$-0.1455(3)$	$0.4655(3)$
$\mathrm{C}(3)$	$0.1449(2)$	$-0.2653(4)$	$0.5633(3)$
$\mathrm{C}(4)$	$0.2021(2)$	$-0.4036(4)$	$0.5856(3)$
$\mathrm{C}(5)$	$0.2743(2)$	$-0.4243(4)$	$0.5138(3)$
$\mathrm{C}(6)$	$0.2903(2)$	$-0.3060(4)$	$0.4155(3)$
$\mathrm{C}(7)$	$0.3472(2)$	$0.1367(3)$	$0.2844(3)$
$\mathrm{C}(8)$	$0.3963(2)$	$0.1281(4)$	$0.4022(3)$
$\mathrm{C}(9)$	$0.4647(2)$	$0.2465(4)$	$0.4244(3)$
$\mathrm{C}(10)$	$0.4825(2)$	$0.3700(4)$	$0.3300(3)$
$\mathrm{C}(11)$	$0.4325(2)$	$0.3778(4)$	$0.2144(3)$
$\mathrm{C}(12)$	$0.3640(2)$	$0.2614(4)$	$0.1892(3)$

* Special position with symmetry 2.

Details of the structures

The bond lengths and angles in $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{AsI}_{3}$ and CsI_{3} at $-160^{\circ} \mathrm{C}$ are listed in Table 7.

The [010] projection of the structure of $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{AsI}_{3}$ is given in Fig. 3, both the I_{3}^{-}ion and the $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{As}^{+}$ group lie at special positions with symmetry 2. It is seen that the I_{3}^{-}ions have no short intermolecular distances to neighbouring atoms. The As atom is approximately tetrahedrally surrounded by benzene rings, which are planar within experimental error. The suggestion given in the literature (Brown \& Nunn,

Fig. 2. The p-orbitals used in the bond order calculations for the I_{3}^{-}ions in $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NI}_{3}(\mathrm{I})$. The orbitals of the 'central' ion (A or B) are dotted. The structure is idealized in such a way [compare with Fig. 1(a) in Migchelsen \& Vos, 1967], that only angles of 90° and 180° are considered. Only part of a two-dimensional layer is taken into account.

Table 5. $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{AsI}_{3}$ at $-160^{\circ} \mathrm{C}$. Thermal parameters $\times 10^{4}\left(\AA^{2}\right)$ of the temperature factor $\exp \left[-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+2 h k a^{*} b^{*} U_{12}+\ldots\right)\right]$

	U_{11}	U_{22}	U_{33}	$2 U_{12}$	$2 U_{23}$	$2 U_{13}$
I(1)	258 (1)	168 (1)	238 (1)	0	0	-25 (2)
I(2)	237 (1)	304 (1)	329 (1)	77 (1)	-80 (2)	19 (1)
As	158 (1)	156 (2)	170 (2)	0	0	21 (2)
C(1)	193 (10)	170 (10)	172 (10)	25 (17)	35 (17)	4 (16)
C (2)	211 (11)	198 (11)	221 (12)	-26 (19)	5 (19)	47 (18)
C(3)	315 (14)	255 (13)	253 (14)	-67 (22)	84 (22)	124 (22)
C(4)	394 (16)	225 (13)	250 (14)	-152 (23)	147 (22)	-70 (24)
C(5)	340 (15)	220 (13)	319 (15)	43 (22)	147 (23)	-96 (24)
C(6)	253 (13)	220 (12)	295 (14)	104 (20)	65 (22)	-8(21)
$\mathrm{C}(7)$	178 (10)	173 (11)	205 (11)	-15 (17)	-27 (18)	40 (17)
C(8)	207 (11)	237 (12)	213 (12)	10 (18)	-15 (19)	12 (18)
C (9)	242 (12)	296 (14)	271 (14)	-56 (21)	-115 (23)	-79 (21)
$\mathrm{C}(10)$	267 (13)	219 (13)	344 (15)	- 125 (21)	-101 (23)	51 (23)
C(11)	272 (13)	203 (12)	369 (17)	-100 (20)	- 5 (23)	128 (24)
C(12)	246 (12)	210 (12)	224 (12)	-46 (19)	5 (19)	8 (19)

Table 6. CsI_{3} at $-160^{\circ} \mathrm{C}$. Positional and thermal parameters $\left(\AA^{2}\right)$
All atoms lie on the mirror plane $x=0 \cdot 25$. For numbering of atoms see Fig. 4.

	y	z	U_{11}	U_{22}	U_{33}	$2 U_{23}$
	y					
$\mathrm{I}(1)$	$0.35763(9)$	$0.16272(8)$	$0.026(4)$	$0.0142(3)$	$0.0154(3)$	$-0.0008(5)$
$\mathrm{I}(2)$	$0.54967(8)$	$0.37731(8)$	$0.0177(4)$	$0.0142(3)$	$0.0140(3)$	$0.0024(5)$
$\mathrm{I}(3)$	$0.73692(9)$	$0.57225(8)$	$0.0238(4)$	$0.0146(3)$	$0.0159(3)$	$0.0019(5)$
Cs	$0.46639(9)$	$0.82872(8)$	$0.0202(4)$	$0.0185(3)$	$0.0164(3)$	$-0.0029(5)$

Table 7. Distances and angles in $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{AsI}_{3}$ (a) and in $\mathrm{CsI}_{3}(b)$ at $-160^{\circ} \mathrm{C}$
The standard deviations in the Table are obtained from those given in Tables 4 and 6 after multiplication by $1 \cdot 5$, as the standard deviations from the least-squares program are lower estimates of the errors in the structure (Visser \& Vos, 1971).
(a)

$\mathrm{I}(1)-\mathrm{I}(2)$	2.919 (1) \AA	$\mathrm{I}(2)-\mathrm{I}(1)-\mathrm{I}\left(2^{\prime}\right)$	174.69 (2) ${ }^{\circ}$
$\mathrm{C}(1)-\mathrm{C}(2)$	1.392 (6)	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	121.4 (4)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 388$ (6)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$119 \cdot 2$ (4)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.383 (7)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$119 \cdot 5$ (4)
$\mathrm{C}(4)-\mathrm{C}(5)$	$1 \cdot 379$ (7)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$121 \cdot 5$ (4)
C(5)-C(6)	1.389 (7)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$120 \cdot 1$ (4)
$\mathrm{C}(6)-\mathrm{C}(1)$	$1 \cdot 403$ (6)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$ $\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(8)$	118.3 (4) $121.9(4)$
		$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(8)$	121.9 (4)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.389 (6)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	118.4 (4)
$\mathrm{C}(8)-\mathrm{C}(9)$	$1 \cdot 393$ (6)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$120 \cdot 1$ (4)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.393 (7)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$120 \cdot 6$ (4)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.377 (7)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$120 \cdot 7$ (4)
$\mathrm{C}(11)-\mathrm{C}(12)$	$1 \cdot 388$ (6)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	118.2 (4)
$\mathrm{C}(12)-\mathrm{C}(7)$	$1 \cdot 401$ (6)	$\begin{aligned} & \mathrm{C}(1)-\mathrm{As}-\mathrm{C}(7) \\ & \mathrm{C}\left(1^{\prime}\right)-\mathrm{As}-\mathrm{C}(7) \end{aligned}$	$\begin{aligned} & 112 \cdot 1(2) \\ & 111 \cdot 2(2) \end{aligned}$
As --C(1)	1.902 (4)	$\mathrm{C}(1)-\mathrm{As}-\mathrm{C}\left(1^{\prime}\right)$	$105 \cdot 2$ (2)
As --C(7)	1.903 (4)	$\mathrm{C}(7)$-As - $\mathrm{C}\left(7^{\prime}\right)$	$105 \cdot 3$ (2)
(b)			
$\mathrm{I}(1)-\mathrm{I}(2)$	3.038 (2) \AA	$\mathrm{I}(1)-\mathrm{I}(2)-\mathrm{I}(3)$	178.00 (6) ${ }^{\circ}$
$\mathrm{I}(2)-\mathrm{I}(3)$	$2 \cdot 842$ (2)	$\mathrm{I}(2)-\mathrm{I}(3)-\mathrm{I}\left(2^{\prime}\right)$	$171 \cdot 34$ (6)
$\mathrm{I}(3) \cdots \mathrm{I}\left(2^{\prime}\right)$	3.972 (2)	$\mathrm{I}(3)-\mathrm{I}\left(2^{\prime}\right)-\mathrm{I}\left(1^{\prime}\right)$	$73 \cdot 40$ (6)
$\mathrm{I}(3) \cdots \mathrm{I}\left(1^{\prime}\right)$	$4 \cdot 160$ (2)		

1966; Bernstein \& Herbstein, 1968), that the twofold symmetry of the I_{3}^{-}ion is not genuine but due to

Fig. 3. The structure of $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{AsI}_{3}$ seen along the [010] axis. As and $I(1)$ lie on the twofold axes $\left[\frac{1}{4}, y, \frac{1}{4}\right]$ and $\left[\frac{1}{4}, y, \frac{3}{4}\right]$ respectively.

Fig.4. The structure of CsI_{3} seen along the [010] axis.
disorder, is not supported by the thermal parameters of the present low temperature study.
In CsI_{3} all atoms lie in the mirror plane $x=0.25$, and in symmetrically related planes. Fig. 4 clearly shows that the surroundings of the I_{3}^{-}ion are strongly asymmetric, and that there are approximately linear arrays of type I-I-I \cdots I.

We wish to thank Professor Aafje Vos for many valuable discussions and Dr D. Kracht for doing the PPP calculations. The calculations were done at the Groningen University Computing Centre.

References

Bernstein, T. \& Herbstein, F. H. (1968). Acta Cryst. B24, 1640.

Bolhuls, F. van (1971). J. Appl. Cryst. 4, 263.
Brown, R. D. \& Nunn, E. K. (1966). Aust. J. Chem. 19, 1567.

Busing, W. R. \& Levy, H. A. (1957). Acta Cryst. 10, 180.
Cheesman, G. H. \& Finney, A. J. T. (1970). Acta Cryst. B26, 904.
CRUICKShank, D. W. J. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis. Oxford: Pergamon Press.
Doyle, P. A. \& Turner, P. S. (1968). Acta Cryst. A24, 395.
Havinga, E. E. \& Wiebenga, E. H. (1958). Acta Cryst. 11, 733.

International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Migchelsen, T. \& Vos, A. (1967). Acta Cryst. 23, 796.
Mooney-Slater, R. C. L. (1959). Acta Cryst. 12, 187.
Pariser, R. \& Parr, R. G. (1953). J. Chem. Phys. 21, 466.
Pople, J. A. (1953). Trans. Faraday Soc. 49, 1375.
Rundle, R. E. (1961). Acta Cryst. 14, 585.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175.

Tasman, H. A. \& Boswijk, K. H. (1955). Acta Cryst. 8, 59.
Visser, G. J. \& Vos, A. (1971). Acta Cryst. B27, 1793.
Wiebenga, E. H. \& Kracht, D. (1969). Inorg. Chem. 8, 738.
Zachariasen, W. H. (1968). Acta Cryst. A 24, 212.

